4-BIT MICROCONTROLLER

Table of Contents--
GENERAL DESCRIPTION 2
FEATURES 2
PIN CONFIGURATION 3
PIN DESCRIPTION 4
BLOCK DIAGRAM 5
FUNCTIONAL DESCRIPTION 6
ABSOLUTE MAXIMUM RATINGS 34
DC CHARACTERISTICS 35
AC CHARACTERISTICS 36
PAD ASSIGMENT \& POSITIONS 37
TYPICAL APPLICATION CIRCUIT 39
INSTRUCTION SET TABLE 40
PACKAGE DIMENSION 90

W741C260

GENERAL DESCRIPTION

The W741C260 is a high-performance 4-bit microcontroller ($\mu \mathrm{C}$) with an LCD driver. The device contains a 4-bit ALU, two 8-bit timers, two dividers, a 32×4 LCD driver, and five 4-bit I/O ports (including 1 output port to drive the LEDs). There are also five interrupt sources and 8-level subroutine nesting for interrupt applications. The W741C260 has two power reduction modes, hold mode and stop mode, which help to minimize power dissipation.

The W741C260 has two oscillator circuits and can work in dual-clock or single-clock operation mode. It is suitable for remote controllers, watches and clocks, speech synthesis LSI controllers, hand-held games and other products.

FEATURES

- Operating voltage: 2.2 V to 5.5 V (LCD drive voltage: 3.0 V , or 4.5 V)
- Operating frequency up to 4 MHz
- Crystal/RC oscillation circuit selectable by code option for system clock
- 32.768 KHz crystal oscillation circuit for sub-oscillator
- High-frequency clock (400 KHz to 4 MHz) or low-frequency clock (32.768 KHz) for crystal mode; selectable by code option
- Memory
-2048×16 bit program ROM (including $2 \mathrm{~K} \times 4$ bit look-up table)
-128×4 bit data RAM (including 16 working registers)
-32×4 LCD data RAM
- 21 input/output pins
- Ports for input only: 2 ports/8 pins
- Input/output ports: 2 ports/8 pins
- Port for output only: 1 port /4 pins (high sink current to drive LEDs)
- MFP output pin: 1 pin (MFP)
- Power-down mode
- Hold function: no operation (except for oscillator)
- Stop function: no operation (including main oscillator)
- Five types of interrupts
- Four internal interrupts (Divider 0, Divider 1, Timer 0, Timer 1)
- One external interrupt (Port RC)
- LCD driver output
- 32 segment $\times 4$ common
- Static, $1 / 2$ duty ($1 / 2$ bias), $1 / 3$ duty ($1 / 2$ or $1 / 3$ bias), $1 / 4$ duty ($1 / 3$ bias) driving mode can be selected
- LCD driver output pins can be used as DC output ports; selectable by code option
- MFP output pin
- Output is software selectable as modulating or nonmodulating frequency
- Works as frequency output specified by Timer 1
- Two built-in 14-bit clock frequency divider circuit (divider 0 and divider 1)
- Two built-in 8-bit programmable countdown timers
- Timer 0: one of two internal clock frequencies (Fosc/4 or Fosc/1024) can be selected
- Timer 1: includes an auto-reload function; and one of two internal clock frequencies (Fosc or Fosc/64) can be selected or falling edge of pin RC. 0 can be selected (output through MFP pin)
- Built-in 18/14-bit watchdog timer selectable for system reset
- Powerful instruction set: 118 instructions
- 8 -level subroutine (include interrupt) nesting
- Up to $1 \mu \mathrm{~S}$ instruction cycle (with 4 MHz operating frequency)
- Packaged in 80 -pin QFP

PIN CONFIGURATION

W741C260

PIN DESCRIPTION

W741C260

Electronics Corp.
BLOCK DIAGRAM

W741C260

Yinbond
 Electronics Corp.

FUNCTIONAL DESCRIPTION

Program Counter (PC)

Organized as an 11-bit binary counter (PC0 to PC10), the program counter generates the addresses of the 2048×16 on-chip ROM containing the program instructions. When the jump or subroutine call instructions or the interrupt or initial reset conditions are to be executed, the address corresponding to the instruction will be loaded into the program counter. The format used is shown below.

ITEM	ADDRESS	INTERRUPT PRIORITY
Initial Reset	000 H	-
INT 0 (Divider 0)	004 H	1st
INT 1 (Timer 0)	008 H	2nd
INT 2 (Port RC)	00 CH	3rd
INT 4 (Divider 1)	014 H	4th
INT 7 (Timer 1)	020 H	5th
JP Instruction	XXXH	-
Subroutine Call	XXXH	-

Stack Register (STACK)

The stack register is organized as 11 bits $\times 8$ levels (first-in, last-out). When either a call subroutine or an interrupt is executed, the program counter will be pushed onto the stack register automatically. At the end of a call subroutine or an interrupt service subroutine, the RTN instruction must be executed to pop the contents of the stack register into the program counter. When the stack register is pushed over the eighth level, the contents of the first level will be lost. In other words, the stack register is always eight levels deep.

Program Memory (ROM)

The read-only memory (ROM) is used to store program codes; the look-up table is arranged as 2048 $\times 4$ bits. The first three quarters of ROM (000 H to 5 FFH) are used to store instruction codes only, but the last quarter (600 H to 7 FFH) can store both instruction codes and the look-up table. Each look-up table element is composed of 4 bits, so the look-up table can be addressed up to 2048 elements. There are two registers (TABL and TABH) to be used in look-up table addressing and they are controlled by MOV TABH, R and MOV TABL, R instructions. When the instruction MOVC R is executed, the contents of the look-up table location address specified by TABH, TABL and ACC will be read and transfered to the data RAM. Refer to the instruction table for more details. The organization of the program memory is shown in Figure 1.

Figure 1. Program Memory Organization

Data Memory (RAM)

1. Architecture

The static data memory (RAM) used to store data is arranged as 128×4 bits. The data memory can be addressed directly or indirectly. The organization of the data memory is shown in Figure 2.

Figure 2. Data Memory Organization

The first sixteen addresses (00 H to 0 FH) in the data memory are known as the working registers (WR). The other data memory is used as general memory and cannot operate directly with immediate data. The relationship between data memory locations and the page register (PAGE) in indirect addressing mode is described in the next section.

2. Page Register (PAGE)

The page register is organized as a 4-bit binary register. The bit descriptions are as follows:

	3	1	1	0
PAG/W	R/W	R/W	R/W	

Note: R/W means read/write available.
Bit 3 is reserved.
Bit 2, Bit 1, Bit 0 Indirect addressing mode preselect bits:
$000=$ Page $0(00 \mathrm{H}-0 \mathrm{FH})$
001 = Page 1 ($10 \mathrm{H}-1 \mathrm{FH}$)
010 = Page $2(20 \mathrm{H}-2 \mathrm{FH})$
011 = Page 3 ($30 \mathrm{H}-3 \mathrm{FH}$)
$100=$ Page $4(40 \mathrm{H}-4 \mathrm{FH})$
$101=$ Page $5(50 \mathrm{H}-5 \mathrm{FH})$
$110=$ Page $6(60 \mathrm{H}-6 \mathrm{FH})$
111 = Page 7 ($70 \mathrm{H}-7 \mathrm{FH}$)

Accumulator (ACC)

The accumulator (ACC) is a 4-bit register used to hold results from the ALU and transfer data between the memory, I/O ports, and registers.

Arithmetic and Logic Unit (ALU)

This is a circuit which performs arithmetic and logic operations. The ALU provides the following functions:

- Logic operations: ANL, XRL, ORL
- Branch decisions: JB0, JB1, JB2, JB3, JNZ, JZ, JC, JNC, DSKZ, DSKNZ, SKB0, SKB1, SKB2, SKB3
- Shift operations: SHRC, RRC, SHLC, RLC
- Binary additions/subtractions: ADC, SBC, ADD, SUB, ADU, DEC, INC

After any of the above instructions are executed, the status of the carry flag (CF) and zero flag (ZF) is stored in the internal registers. Otherwise CF can be stored or be read out by executing MOVA R, CF or MOV CF, R.

Clock Generator

The W741C260 provides two oscillation circuits, main-oscillator and sub-oscillator. The mainoscillator can select the crystal or RC oscillation circuit by option codes to generate the system clock through external connections. If a crystal oscillator is used, a crystal or a ceramic resonator must be connected to XIN1 and XOUT1, and a capacitor must be connected if an accurate frequency is needed. When the oscillator is used, a high-frequency clock (400 KHz to 4 MHz) or low-frequency clock (32 KHz) can be selected for the system clock by means of option codes. If the RC oscillator is used, a resistor must be connected to XIN1 and XOUT1, and the high/low frequency clock option must be selected to suit the operation frequency. The sub-oscillator must be connected to a 32.768 KHz crystal through XIN2 and XOUT2 external pins when the dual-clock operation mode is selected by option code. The connection is shown in Figure 3. One machine cycle consists of a four-state system clock sequence and can run up to $1 \mu \mathrm{~S}$ with a 4 MHz system clock.

Figure 3. Oscillator Configuration

Dual-clock operation

This operation mode is selected by code option. In the dual-clock mode, the clock source of the LCD frequency selector should be the sub-oscillator clock (32768 Hz) only. But in the single-clock mode, the clock source of the LCD frequency selector will be Fm or Fm/32 (Fm: main oscillator clock).
In this dual-clock mode, the normal operation is performed by generating the system clock from the main-oscillator clock (Fm). As required, the slow operation can be performed by generating the system clock from the sub-oscillator clock (Fs). The exchange of the normal operation and the slow operation is performed by resetting or setting the bit 0 of the system clock control register (SCR). If the SCR. 0 is reset to 0 , the clock source of the system clock generator is the main-oscillator clock; if the SCR. 0 is set to 1 , the clock source of the system clock generator is the sub-oscillator clock. In dual-clock mode, the main-oscillator can stop oscillating when SCR. 1 is set to 1 . But in the singleclock mode, the main-oscillator can not be stop from oscillating because the SCR would be disabled in single-clock mode. Therefore, in sigle-clock mode, the clock source of the system clock generator is the main-oscillator clock ($\mathrm{FOSC}=\mathrm{Fm}$).
When the SCR is set or reset, we must pay attention to the following:

1. $\mathrm{X} 000 \mathrm{~B} \rightarrow \mathrm{X} 011 \mathrm{~B}$: Disable the main-oscillator (Fm) should not be done simultaneously with changing the system clock source (FOSC) from Fm to Fs. The Fosc should be changed first from Fm to Fs before the main-oscillator (Fm) is disabled. The correct seqence is:
$\mathrm{X} 000 \mathrm{~B} \rightarrow \mathrm{X001B} \rightarrow \mathrm{X011B}$.
2. $\mathrm{X} 011 \mathrm{~B} \rightarrow \mathrm{X000B}$: Enabling the main-oscillator (Fm) should not be done simultaneously with changing the Fosc from Fs into Fm. The main-oscillator (Fm) should be enabled first before a delay subroutine is called to allow the main-oscillator to oscillate stably. The Fosc can now be changed from Fs into Fm. The correct sequence is therefore $\mathrm{X} 011 \mathrm{~B} \rightarrow \mathrm{X001B} \rightarrow$ delay subroutine \rightarrow X000B. The suggested delay for Fm is 20 mS for 455 KHz ceramic resonator and 10 mS for 4 MHz crystal.

We must remember that the X010B state is inhibitive, because it will induce a system shutdown.
The organization of the dual-clock operation mode is shown below.

Figure 4. The Dual Clock Operation Mode Control Diagram

Divider

Each divider is organized as a 14-bit binary up-counter designed to generate periodic interrupts. When the main oscillator starts action, the divider0 is incremented by each clock (Fosc). When an overflow occurs, the divider0 event flag is set to 1 (EVF. $0=1$). The interrupt is executed if the divider0 interrupt enable flag has been set (IEF. $0=1$), and the hold state is terminated if the hold release enable flag has been set (HEF. $0=1$). The last 4 -stage of the divider0 can be reset by executing a CLR DIVRO instruction. If the main oscillator is connected to the 32768 Hz crystal, the EVF. 0 will be set to 1 periodically at each 500 mS interval.
If the sub-oscillator is enabled, the divider1 is incremented by each clock (Fs). When an overflow occurs, the divider1 event flag is set to 1 (EVF. $4=1$). The interrupt is executed if the divider1 interrupt enable flag has been set (IEF. $4=1$), and the hold state is terminated if the hold release enable flag has been set (HEF. $4=1$). There are two time periods ($250 \mathrm{mS} \& 500 \mathrm{mS}$) that can be selected by setting the SCR. 3 bit. When SCR. $3=0$ (default), the 500 mS period time is selected; when SCR. $3=1$, the 250 mS period time is selected.

Watchdog Timer (WDT)

The watchdog timer (WDT) is organized as a 4-bit up counter and is designed to protect the program from unknown errors. The WDT is enabled when the corresponding option code bit of the WDT is set to 1. If the WDT overflows, the chip will be reset. At initial reset, the input clock of the WDT is Fosc/1024. The input clock of the WDT can be switched to Fosc/16384 (or Fosc/1024) by executing the SET PMF, \#08H (or CLR PMF, \#08H) instruction. The contents of the WDT can be reset by the instruction CLR WDT. In normal operation, the application program must reset WDT before it overflows. A WDT overflow indicates that the operation is not under control and the chip will be reset. The WDT minimun overflow period is 468.75 mS when the system clock (FOSc) is 32 KHz and WDT clock input is Fosc/1024. When the corresponding option code bit of the WDT is set to 0 , and the WDT function is disabled. The organization of the Divider0 and watchdog timer is shown in Figure 4.

Figure 4. Organization of Divider 0 and Watchdog Timer

Timer/Counter

1. Timer 0 (TMO)

Timer 0 (TMO) is a programmable 8-bit binary down-counter. The specified value can be loaded into TMO by executing the MOV TMOL (TMOH), R or MOV TMO, \#l instructions. When the MOV TMOL (TMOH), R instructions are executed, the TM0 will stop down-counting (if the TMO is down-counting), the MR0.3 will be reset to 0 , and the specified value is loaded into TMO. If MR0.3 is set to 1 , the event flag 1 (EVF.1) is reset and the TM0 starts to count. When it decrements to FFH, Timer 0 stops operating and generates an underflow (EVF. $1=1$). The interrupt is executed if the Timer 0 interrupt enable flag has been set (IEF. $1=1$); and the hold state is terminated if the hold release enable flag 1 has been set (HEF. $1=1$). The Timer 0 clock input can be set as Fosc/1024 or Fosc/4 by setting MR0.0 to 1 or by resetting MR0.0 to 0 . The default timer value is Fosc/4. The organization of Timer 0 is shown in Figure 5.

If the Timer 0 clock input is Fosc/4, then:
Desired Time 0 interval = (preset value +1) $\times 4 \times 1 /$ Fosc
If the Timer 0 clock input is Fosc/1024, then:
Desired Time 0 interval $=($ preset value +1$) \times 1024 \times 1 /$ Fosc
Preset value: Decimal number of Timer 0 preset value
Fosc: Clock oscillation frequency

Figure 5. Organization of Timer 0

2. Timer 1 (TM1)

Timer 1 (TM1) is also a programmable 8-bit binary down counter, as shown in Figure 6. Timer 1 can be used as a counter to count external events or to output an arbitrary frequency to the MFP pin. The input clock of Timer 1 can be one of three sources: Fosc/64, Fosc, or an external clock from the RC. 0 input pin. The source can be selected by setting bit 0 and bit 1 of mode register 1 (MR1). At initial reset, the Timer 1 clock input is Fosc. If an external clock is selected as the clock source of Timer 1, the content of Timer 1 is decreased by 1 at the falling edge of RC.0. When the MOV TM1L, R or MOV TM1H, R instruction is executed, the specified data are loaded into the auto-reload buffer and the TM1 down-counting will be disabled (i.e. MR1.3 is reset to 0). If the bit 3 of MR1 is set (MR1.3 = 1), the contents of the auto-reload buffer will be loaded into the TM1 down counter, Timer 1 starts to down count, and the event flag 7 is reset (EVF. $7=0$). When the MOV TM1, \#I instruction is executed, the event flag 7 (EVF.7) and MR1.3 are reset and the specified value is loaded into autoreload buffer and TM1 by the internal hardware, then the MR1.3 is set, that is the TM1 starts to count by the hardware. When the timer decrements to FFH, it will generate an underflow (EVF. $7=1$) and be auto-reloaded with the specified data, after which it will continue to count down. An interrupt is executed if the interrupt enable flag 7 has been set to 1 (IEF. $7=1$), and the hold state is terminated if the hold mode release enable flag 7 is set to 1 (HEF. $7=1$). The specified frequency of Timer 1 can be delivered to the MFP output pin by programming bit 2 of MR1. Bit 3 of MR1 can be used to make Timer 1 stop or start counting.

If the Timer 1 clock input is FT , then:
Desired Timer 1 interval $=($ preset value +1$) / \mathrm{FT}$
Desired frequency for MFP output pin $=\mathrm{FT} \div($ preset value +1$) \div 2(\mathrm{~Hz})$
Preset value: Decimal number of Timer 1 preset value, and
Fosc: Clock oscillation frequency

Figure 6. Organization of Timer 1
For example, when FT equals 32768 Hz , depending on the preset value of TM1, the MFP pin will output a single tone signal in the tone frequency range from 64 Hz to 16384 Hz . The relation between the tone frequency and the preset value of TM1 is shown in the table below.

		3			4			5		
		Tone frequency	TM1 preset value \& MFP frequency		Tone frequency	TM1 preset value \& MFP frequency		Tone frequency	TM1 preset value \& MFP frequency	
	C	130.81	7CH	131.07	261.63	3EH	260.06	523.25	1EH	528.51
	C\#	138.59	75H	138.84	277.18	3AH	277.69	554.37	1 CH	564.96
T	D	146.83	6FH	146.28	293.66	37H	292.57	587.33	1BH	585.14
0	D\#	155.56	68H	156.03	311.13	34 H	309.13	622.25	19H	630.15
	E	164.81	62H	165.49	329.63	31 H	327.68	659.26	18 H	655.36
	F	174.61	5DH	174.30	349.23	2EH	372.36	698.46	16H	712.34
N	F\#	185.00	58 H	184.09	369.99	2BH	390.09	739.99	15H	744.72
	G	196.00	53H	195.04	392.00	29H	420.10	783.99	14H	780.19
E	G\#	207.65	4EH	207.39	415.30	26H	443.81	830.61	13H	819.20
	A	220.00	49H	221.40	440.00	24H	442.81	880.00	12H	862.84
	A\#	233.08	45H	234.05	466.16	22H	468.11	932.23	11H	910.22
	B	246.94	41H	248.24	493.88	20 H	496.48	987.77	10H	963.76

Note: Central tone is A4 $(440 \mathrm{~Hz})$.

W741C260

Mode Register 0 (MRO)

Mode Register 0 is organized as a 4-bit binary register (MR0.0 to MR0.3). MRO can be used to control the operation of Timer 0 . The bit descriptions are as follows:

Note: W means write only.
Bit $0=0 \quad$ The internal fundamental frequency of Timer 0 is Fosc/4.
$=1$ The internal fundamental frequency of Timer 0 is Fosc/1024.
Bit 1 Reserved
Bit 2 Reserved
Bit $3=0$ Timer 0 stops down-counting.
$=1$ Timer 0 starts down-counting.

Mode Register 1 (MR1)

Mode Register 1 is organized as a 4-bit binary register (MR1.0 to MR1.3). MR1 can be used to control the operation of Timer 1. The bit descriptions are as follows:

Note: W means write only.
Bit $0=0$ The internal fundamental frequency of Timer 1 is Fosc.
$=1$ The internal fundamental frequency of Timer 1 is Fosc/64.
Bit $1=0 \quad$ The fundamental frequency source of Timer 1 is the internal clock.
$=1$ The fundamental frequency source of Timer 1 is the external clock from RC. 0 input pin.
Bit $2=0$ The specified waveform of the MFP generator is delivered at the MFP output pin.
$=1$ The specified frequency of Timer 1 is delivered at the MFP output pin.
Bit $3=0$ Timer 1 stops down-counting.
$=1$ Timer 1 starts down-counting.

inbond
 Electronics Corp.

Interrupts

The W741C260 provides four internal interrupt sources (Divider 0, Divider 1, Timer 0, Timer 1) and one external interrupt source (port RC). Vector addresses for each of the interrupts are located in the range of program memory (ROM) addresses 004 H to 020 H . The flags IEF, PEF, and EVF are used to control the interrupts. When EVF is set to "1" by hardware and the corresponding bits of IEF and PEF have been set by software, an interrupt is generated. When an interrupt occurs, all of the interrupts are inhibited until the EN INT or MOV IEF,\#I instruction is invoked. The interrupts can also be disabled by executing the DIS INT instruction. When an interrupt is generated in hold mode, the hold mode will be released momentarily and interrupt subroutine will be executed. After the RTN instruction is executed in an interrupt subroutine, the $\mu \mathrm{C}$ will enter hold mode again. The operation flow chart is shown in Figure 8. The control diagram is shown below.

Figure 7. Interrupt Event Control Diagram

Interrupt Enable Flag (IEF)

The interrupt enable flag is organized as an 8-bit binary register (IEF. 0 to IEF.7). These bits are used to control the interrupt conditions. It is controlled by the MOV IEF, \#I instruction. When one of these interrupts is accepted, the corresponding to the bit of the event flag will be reset, but the other bits are unaffected. In interrupt subroutine, these interrupts will be disabled till the instruction MOV IEF, \#I or EN INT is executed again. Therefore, to enable these interrupts, the instructions MOV IEF, \#I or EN

W741C260

INT must be executed again. Otherwise, these interrupts can be disabled by executing DIS INT instruction. The bit descriptions are as follows:

Note: W means write only.
IEF. $0=1$ Interrupt 0 is accepted by overflow from the Divider 0 .
IEF. $1=1$ Interrupt 1 is accepted by underflow from the Timer 0 .
IEF. $2=1$ Interrupt 2 is accepted by a signal change on port RC.
IEF. 3 Reserved
IEF. $4=1$ Interrupt 0 is accepted by overflow from the Divider 1 .
IEF. 5 \& IEF. 6 are reserved.
IEF. $7=1$ Interrupt 7 is accepted by underflow from Timer 1.

Stop Mode Operation

In stop mode, all operations of the $\mu \mathrm{C}$ cease (excluding the operation of sub-oscillator and divider 1 when the dual-clock operation mode is selected). The $\mu \mathrm{C}$ enters stop mode when the STOP instruction is executed and exits stop mode when an external trigger is activated (by a falling signal on the RC port). When the designated signal is accepted, the $\mu \mathrm{C}$ awakens and executes the next instruction (if the corresponding bits of IEF and PEF have been set, It will enter the interrupt service routine after stop mode released). To prevent erroneous execution, the NOP instruction should follow the STOP command.

Stop Mode Wake-up Enable Flag for Port RC (SEF)

The stop mode wake-up flag for port RC is organized as a 4-bit binary register (SEF. 0 to SEF.3). Before port RC may be used to make the device exit the stop mode, the content of the SEF must be set first. The SEF is controlled by the MOV SEF, \#I instruction. The bit descriptions are as follows:

	3	2	1	0
	w	w	w	w

Note: W means write only.
SEF $0=1$ Device will exit stop mode when falling edge signal is applied to pin RC.0.
SEF $1=1$ Device will exit stop mode when falling edge signal is applied to pin RC.1.
SEF $2=1$ Device will exit stop mode when falling edge signal is applied to pin RC.2.
SEF $3=1$ Device will exit stop mode when falling edge signal is applied to pin RC.3.

Hold Mode Operation

In hold mode, all operations of the $\mu \mathrm{C}$ cease, except for the operation of the oscillator, timer, divider and LCD driver. The $\mu \mathrm{C}$ enters hold mode when the HOLD instruction is executed. The hold mode can be released in one of five ways: by the action of timer 0 , timer 1 , divider 0 , divider 1 or the RC port. Before the device enters the hold mode, the HEF, PEF, and IEF flags must be set to define the hold mode release conditions. For more details, refer to the instruction-set table and the following flow chart.

Note : The bit of EVF corresponding to the interrupt request signal will be reset.

Figure 8. Hold Mode and Interrupt Operation Flow Chart

Hold Mode Release Enable Flag (HEF)

The hold mode release enable flag is organized as an 8 -bit binary register (HEF. 0 to HEF.7). The HEF is used to control the hold mode release conditions. It is controlled by the MOV HEF, \#I instruction. The bit descriptions are as follows:

	7	6	5	4	3	2	1	0
HEF	w	-	-	w	-	w	w	w

Note: W means write only.
HEF. $0=1$ Overflow from the Divider 0 causes hold mode to be released.
HEF. $1=1$ Underflow from Timer 0 causes hold mode to be released.
HEF. 2 = 1 Signal change on port RC causes hold mode to be released.
HEF. 3 Reserved
HEF. $4=1$ Overflow from the Divider 1 causes hold mode to be released.
HEF. 5 \& HEF. 6 are reserved.
HEF. 7 = 1 Underflow from Timer 1 causes hold mode to be released.

Port Enable Flag (PEF)

The port enable flag is organized as 4-bit binary register (PEF. 0 to PEF.3). Before port RC may be used to release the hold mode or preform interrupt function, the content of the PEF must be set first. The PEF is controlled by the MOV PEF, \#l instruction. The bit descriptions are as follows:

	3	2	1	0
PEF	w	w	w	w

Note: W means write only.
PEF.0: Enable/disable the signal change on pin RC. 0 to release hold mode or perform interrupt.
PEF.1: Enable/disable the signal change on pin RC. 1 to release hold mode or perform interrupt.
PEF.2: Enable/disable the signal change on pin RC. 2 to release hold mode or perform interrupt.
PEF.3: Enable/disable the signal change on pin RC. 3 to release hold mode or perform interrupt.

Hold Mode Release Condition Flag (HCF)

The hold mode release condition flag is organized as a 8 -bit binary register (HCFO to HCF7). It indicates by which interrupt source the hold mode has been released, and is loaded by hardware. The HCF can be read out by the MOVA R, HCFL and MOVA R, HCFH instructions. When any of the HCF bits is "1," the hold mode will be released and the HOLD instruction is invalid. The HCF can be reset by the CLR EVF,\#I (EVF.n $=0$) or MOV HEF,\#I (HEF.n $=0$) instructions. When EVF or HEF have been reset, the corresponding bit of HCF is reset simultaneously. The bit descriptions are as follows:

	7	6	5	4	3	2	1	0
HCF	-	-	R	R	-	R	R	R

Note: R means read only.

W741C260

HCF. $0=1$ Hold mode was released by overflow from the Divider0.
HCF. 1 = 1 Hold mode was released by underflow from the Timer 0.
HCF. $2=1$ Hold mode was released by a signal change on port RC
HCF. 3 Reservsd
HCF. $4=1$ Hold mode was released by overflow from the Divider 1 .
HCF. $5=1$ Hold mode was released by underflow from the Timer 1 .
HCF. 6 \& HCF. 7 are reserved.

Event Flag (EVF)

The event flag is organized as an 8-bit binary register (EVF0 to EVF7). It is set by hardware and reset by CLR EVF,\#l instruction or the occurrence of an interrupt. The bit descriptions are as follows:

	7	6	5	4	3	2	1	0
EVF	R	-	-	R	-	R	R	R

Note: R means read only.
EVF. $0=1$ Overflow from Divider 0 occurred.
EVF. 1 = 1 Underflow from Timer 0 occurred.
EVF. $2=1$ Signal change on port RC occurred.
EVF. 3 Reserved
EVF. 4 = 1 Overflow from Divider 1 occurred.
EVF. 5 \& EVF. 6 are reserved.
EVF. 7 = 1 Underflow from Timer 1 occurred.

Parameter Flag (PMF)

The parameter flag is organized as a 4-bit binary register (PMF. 0 to PMF.3). The PMF is controlled by the SET PMF, \#I or CLR PMF, \#I instruction. The bit descriptions are as follows:

Note: W means write only.
Bit 0, Bit1, Bit2 Reserved
Bit $3=0$ The fundamental frequency of the watchdog timer is Fosc/1024.
$=1$ The fundamental frequency of the watchdog timer is Fosc/16384.

W741C260

Port Mode 0 Register (PMO)

The port mode 0 register is organized as a 4-bit binary register (PM0.0 to PM0.3). PM0 can be used to determine the structure of the input/output ports; it is controlled by the MOV PMO, \#l instruction. The bit descriptions are as follows:

	3	2	1	0
	PM0	w	w	w

Note: W means write only.
Bit $0=0 \quad$ RA port is CMOS output type. Bit $0=1 \quad$ RA port is NMOS open drain output type.
Bit $1=0 \quad$ RB port is CMOS output type. Bit $0=1 \quad$ RB port is NMOS open drain output type.
Bit $2=0 \quad$ RC port pull-high resistor is disabled.
$=1$ RC port pull-high resistor is enabled.
Bit $3=0$ RD port pull-high resistor is disabled.
$=1$ RD port pull-high resistor is enabled.

Port Mode 1 Register (PM1)

The port mode 1 register is organized as a 4-bit binary register (PM1.0 to PM1.3). PM1 can be used to control the input/output mode of port RA. PM1 is controlled by the MOV PM1, \#l instruction. The bit descriptions are as follows:

Note: W means write only.
Bit $0=0 \quad$ RA. 0 works as output pin; Bit $0=1$ RA. 0 works as input pin
Bit $1=0$ RA. 1 works as output pin; Bit $1=1$ RA. 1 works as input pin
Bit $2=0$ RA. 2 works as output pin; Bit $2=1$ RA. 2 works as input pin
Bit $3=0$ RA. 3 works as output pin; Bit $3=1$ RA. 3 works as input pin
At initial reset, port RA is input mode (PM1 = 1111B).

Port Mode 2 Register (PM2)

The port mode 2 register is organized as a 4-bit binary register (PM2.0 to PM2.3). PM2 can be used to control the input/output mode of port RB. PM2 is controlled by the MOV PM2, \#l instruction. The bit descriptions are as follows:

	3	2	1	0
	w	w	w	w

Note: W means write only.
Bit $0=0 \quad$ RB. 0 works as output pin; Bit $0=1$ RB. 0 works as input pin

W741C260

Bit $1=0$ RB. 1 works as output pin; Bit $1=1$ RB. 1 works as input pin
Bit $2=0$ RB. 2 works as output pin; Bit $2=1$ RB. 2 works as input pin
Bit $3=0$ RB. 3 works as output pin; Bit $3=1$ RB. 3 works as input pin
At initial reset, the port RB is input mode $(P M 2=1111 \mathrm{~B})$.

Reset Function

The W741C260 is reset either by a power-on reset or by using the external $\overline{\mathrm{RES}}$ pin. The initial state of the W741C260 after the reset function is executed is described below.

Program Counter (PC)	OOOH
TM0, TM1	Reset
MR0, MR1, PM0, PAGE, PMF registers	Reset
PM1, PM2 registers	Set (1111B)
PSR0 register	Reset
IEF, HEF, PEF, SEF, HCF, EVF flags	Reset
Timer 0 input clock	Fosc/4
Timer 1 input clock	Fosc
MFP output	Low
Input/output ports RA, RB	Input mode
Output port RE	High
RA \& RB ports output type	CMOS type
RC \& RD ports pull-high resistors	Disable
Input clock of the watchdog timer	FosC/1024
LCD display	OFF
Segment output mode	LCD drive output

W741C260

rinbond
 Electronics Corp

Input/Output Ports RA, RB

Port RA consists of pins RA. 0 to RA. 3 and port RB consists of pins RB. 0 to RB.3. At initial reset, input/output ports RA and RB are both in input mode. When RA and RB are used as output ports, CMOS or NMOS open drain output type can be selected by the PMO register. Each pin of port RA or RB can be specified as input or output mode independently by the PM1 and PM2 registers. The MOVA R, RA or MOVA R, RB instructions operate the input functions and the MOV RA, R or MOV RB, R operate the output functions. For more details, refer to the instruction table and Figure 9.

Figure 9. Architecture of Input/Output Pins

Input Ports RC, RD

Port RC consists of pins RC. 0 to RC.3, and port RD consists of pins RD. 0 to RD.3. Each pin of port RC and port RD can be connected to a pull-up resistor, which is controlled by the port mode 0 register (PMO). When the PEF, HEF, and IEF corresponding to the RC port are set, a signal change at the specified pins of port RC will execute the hold mode release or interrupt subroutine. Port status register 0 (PSRO) record the signal changing status on the port RC. PSRO can be read out and cleared by the MOVA R, PSR0, and CLR PSRO instructions. Refer to Figure 10 and the instruction table for more details. The RD port is used as input port only, it has no hold mode release or interrupt functions.

Figure 10. Architecture of Input Ports RC

Output Port RE

When the MOV RE, R instruction is executed, the data in the RAM will be output to port RE and it provides a high sink current to drive LEDs.

Port Status Register 0 (PSRO)

Port status register 0 is organized as 4-bit binary register (PSR0.0 to PSR0.3). PSRO can be read or cleared by the MOVA R, PSR0, and CLR PSRO instructions. The bit descriptions are as follows:

	3	2	1	0
PSR0	R	R	R	R

Note: R means read only.
Bit $0=1 \quad$ Signal change on RC. 0
Bit $1=1$ Signal change on RC. 1
Bit $2=1$ Signal change on RC. 2
Bit $3=1 \quad$ Signal change on RC. 3

W741C260

rinbond
 Electronics Corp.

MFP Output Pin (MFP)

The MFP output pin can output the Timer 1 clock or the modulation frequency; the output of the pin is determined by mode register 1 (MR1). The organization of MR1 is shown in Figure 6. When bit 2 of MR1 is reset to " 0, " the MFP output can deliver a modulation output in any combination of one signal from among DC, $4096 \mathrm{~Hz}, 2048 \mathrm{~Hz}$, and one or more signals from among $128 \mathrm{~Hz}, 64 \mathrm{~Hz}, 8 \mathrm{~Hz}, 4 \mathrm{~Hz}$, 2 Hz , or 1 Hz (when using a 32.768 KHz system clock). The MOV MFP, \#I instruction is used to specify the modulation output combination. The data specified by the 8 -bit operand and the MFP output pin are shown as below:
(Fosc = 32.768 KHz)

R7 R6	R5	R4	R3	R2	R1	R0	FUNCTION
00	0	0	0	0	0	0	Low level
	0	0	0	0	0	1	128 Hz
	0	0	0	0	1	0	64 Hz
	0	0	0	1	0	0	8 Hz
	0	0	1	0	0	0	4 Hz
	0	1	0	0	0	0	2 Hz
	1	0	0	0	0	0	1 Hz
01	0	0	0	0	0	0	High level
	0	0	0	0	0	1	128 Hz
	0	0	0	0	1	0	64 Hz
	0	0	0	1	0	0	8 Hz
	0	0	1	0	0	0	4 Hz
	0	1	0	0	0	0	2 Hz
	1	0	0	0	0	0	1 Hz
10	0	0	0	0	0	0	2048 Hz
	0	0	0	0	0	1	2048 Hz * 128 Hz
	0	0	0	0	1	0	2048 Hz * 64 Hz
	0	0	0	1	0	0	2048 Hz * 8 Hz
	0	0	1	0	0	0	2048 Hz * 4 Hz
	0	1	0	0	0	0	2048 Hz * 2 Hz
	1	0	0	0	0	0	2048 Hz * 1 Hz
11	0	0	0	0	0	0	4096 Hz
	0	0	0	0	0	1	4096 Hz * 128 Hz
	0	0	0	0	1	0	4096 Hz * 64 Hz
	0	0	0	1	0	0	4096 Hz * 8 Hz
	0	0	1	0	0	0	4096 Hz * 4 Hz
	0	1	0	0	0	0	4096 Hz * 2 Hz
	1	0	0	0	0	0	4096 Hz * 1 Hz

rinbond
 Electronics Corp.

LCD Controller/Driver

The W741C260 can directly drive an LCD with 32 segment output pins and 4 common output pins for a total of 32×4 dots. Option codes can be used to select one of five options for the LCD driving mode: static, $1 / 2$ bias $1 / 2$ duty, $1 / 2$ bias $1 / 3$ duty, $1 / 3$ bias $1 / 3$ duty, or $1 / 3$ bias $1 / 4$ duty (see Figure 12). The alternating frequency of the LCD can be set as Fw/64, Fw/128, Fw/256, or Fw/512. In addition, option codes can also be used to set up four of the LCD driver output pins (segment 0 to segment 31) as a DC output port. The structure of the LCD alternating frequency (FLCD) is shown in the figure below.

Figure 11. LCD Alternating Frequency (FLCD) Circuit Diagram

Figure 12. LCD Driver/Controller Circuit Diagram

When $\mathrm{Fw}=32.768 \mathrm{KHz}$, the LCD frequency is as shown in the table below.

LCD FREQUENCY	STATIC	1/2 DUTY	1/3 DUTY	1/4 DUTY
Fw/512 $(64 \mathrm{~Hz})$	64	32	21	16
Fw/256 $(128 \mathrm{~Hz})$	128	64	43	32
Fw/128 $(256 \mathrm{~Hz})$	256	128	85	64
Fw/64 $(512 \mathrm{~Hz})$	512	256	171	128

Corresponding to the 32 LCD drive output pins, there are 32 LCD data RAM segments (LCDROO to LCDR1F). Instructions such as MOV LCDR, \#I; MOV WR, LCDR; MOV LCDR, WR; and MOV LCDR, ACC are used to control the LCD data RAM. The data in the LCD data RAM are transferred to the segment output pins automatically without program control. When the bit value of the LCD data RAM is "1," the LCD is turned on. When the bit value of the LCD data RAM is " 0, " LCD is turned off. The contents of the LCD data RAM (LCDR) are sent out through the segment 0 to segment 31 pins by a direct memory access. The relationship between the LCD data RAM and segment/common pins is shown below.

		COM3	COM2	COM1	COM0
LCD data RAM	Output pin	bit 3	bit 2	bit 1	bit 0
LCDR00	SEG0	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$
LCDR01	SEG1	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
LCDR1E	SEG30	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$
LCDR1F	SEG31	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$

The LCDON instruction turns the LCD display on (even in HOLD mode), and the LCDOFF instruction turns the LCD display off. At initial reset, all the LCD segments are lit. When the initial reset state ends, the LCD display is turned off automatically. To turn on the LCD display, the instruction LCDON must be executed. When the drive output pins are used as DC output ports (set by option codes, please refer the user's manual of ASM741S assembler for more detail), CMOS output type or NMOS output type can be selected by executing the instruction MOV LCDM, \#l. The relation between the LCD data RAM and segment/common pins is shown below. The data in LCDR00 are transferred to the corresponding segment output port (SEG3 to SEG0) by a direct memory access. The other LCD data RAM segments can be used as normal data RAM to store data.

LCD DATA RAM	OUTPUT PIN	BIT 3	BIT 2	BIT 1	BIT 0
LCDR00	SEG3-SEG0	SEG3	SEG2	SEG1	SEG0
LCDR03-LCDR01	-	-	-	-	-
LCDR04	SEG7-SEG4	SEG7	SEG6	SEG5	SEG4
LCDR07-LCDR05	-	-	-	-	-

Continued

\dot{b}	\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
LCDR1C	SEG31-SEG28	SEG31	SEG30	SEG29	SEG28
LCDR1F-LCDR1D	-	-	-	-	-

The relationship between the LCD drive mode and the maximum number of drivable LCD segments is shown below.

LCD DRIVE MODE	MAX. NUMBER OF DRIVABLE LCD SEGMENT	CONNECTION AT POWER INPUT
Static	32 (COM1)	Connect VDD3, VDD2 to VDD1
$1 / 2$ Bias 1/2 Duty	64 (COM1-COM2)	Connect VDD3 to VDD2
$1 / 2$ Bias 1/3 Duty	96 (COM1-COM3)	Connect VDD3 to VDD2
$1 / 3$ Bias 1/3 Duty	96 (COM1-COM3)	-
$1 / 3$ Bias 1/4 Duty	128 (COM1-COM4)	-

LCD Output Mode Type Flag (LCDM)

The LCD output mode type flag is organized as an 8-bit binary register (LCDM. 0 to LCDM.7). These bits are used to control the LCD output pins architecture. When LCD output pins are set to DC output mode by option codes, the architecture of these output pins (segment 0 to segment 31) can be selected as CMOS or NMOS type. It is controlled by the MOV LCDM, \#I instruction. The bit descriptions are as follows:

	7	6	5	4	3	2	1	0
LCDM	w							

Note: W means write only.
LCDM. $0=0$ SEG0 to SEG3 work as CMOS output type.
= 1 SEG0 to SEG3 work as NMOS output type.
LCDM. $1=0$ SEG4 to SEG7 work as CMOS output type.
= 1 SEG4 to SEG7 work as NMOS output type.
LCDM. $2=0$ SEG8 to SEG11 work as CMOS output type.
$=1$ SEG8 to SEG11 work as NMOS output type.
LCDM. $3=0$ SEG12 to SEG15 work as CMOS output type.
= 1 SEG12 to SEG15 work as NMOS output type.
LCDM. $4=0$ SEG16 to SEG19 work as CMOS output type.
= 1 SEG16 to SEG19 work as NMOS output type.
LCDM. $5=0$ SEG20 to SEG23 work as CMOS output type.
$=1$ SEG20 to SEG23 work as NMOS output type.

LCDM. $6=0$ SEG24 to SEG27 work as CMOS output type.
= 1 SEG24 to SEG27 work as NMOS output type.
LCDM. $7=0$ SEG28 to SEG31 work as CMOS output type.

$$
\text { = } 1 \text { SEG28 to SEG31 work as NMOS output type. }
$$

The output waveforms for the five LCD driving modes are shown below.

Static Lighting System (Example)

Normal Operating Mode

1/2 Bias 1/2 Duty Lighting System (Example)

Normal Operating Mode

$1 / 2$ Bias $1 / 2$ Duty Lighting System (Example)- Normal Operating Mode, continued
$\begin{aligned} & \text { LCD driver } \\ & \text { outputs for } \\ & \text { only seg. on } \\ & \text { COM1 side } \\ & \text { being lit } \\ & \text { LCD driver } \\ & \text { outputs for } \\ & \text { seg. on COM0, } \\ & \text { COM1 sides } \\ & \text { being lit }\end{aligned}$

1/2 Bias 1/3 Duty Lighting System (Example)

Normal Operating Mode

W741C260

1/2 Bias $1 / 3$ Duty Lighting System (Example)- Normal Operating Mode, continued

1/3 Bias 1/3 Duty Lighting System (Example)
Normal Operating Mode

W741C260

1/3 Bias 1/4 Duty Lighting System (Example)
Normal Operating Mode

W741C260

1/3 Bias $1 / 4$ Duty Lighting System (Example)- Normal Operating Mode, continued

W741C260

The power connections for each LCD driving mode, which are determined by a mask option, are shown below.

LCD Configuration, continued

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Supply Voltage to Ground Potential	-0.3 to +7.0	V
Applied Input/Output Voltage	-0.3 to +7.0	V
Power Dissipation	120	mW
Ambient Operating Temperature	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-55 to +150	${ }^{\circ} \mathrm{C}$

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

W741C260

DC CHARACTERISTICS

(VDD-VSS $=3.0 \mathrm{~V}, \mathrm{Fm}=4.19 \mathrm{MHz}, \mathrm{Fs}=32.768 \mathrm{KHz}, \mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{LCD}$ on; unless otherwise specified)

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Op. Voltage	VdD	-	2.2	-	5.5	V
Op. Current (Crystal Type)	Iop1	No load (Ext-V) In dual-clock normal operation	-	0.6	2.5	mA
Op. Current (RC Type)	Iop2	No load (Ext-V) In dual-clock normal operation	-	1	4	mA
Op. Current (Crystal Type)	Iop3	No load (Ext-V) In dual-clock slow operation and Fm is stopped	-	8.5	20	$\mu \mathrm{A}$
Hold Current (Crystal Type)	IHM1	Hold mode No load (Ext-V) In dual-clock normal operation	-	280	450	$\mu \mathrm{A}$
Hold Current (RC Type)	IHM2	Hold mode No load (Ext-V) In dual-clock normal operation	-	500	600	$\mu \mathrm{A}$
Hold Current (Crystal Type)	Інмз	Hold mode No load (Ext-V) In dual-clock slow operation and Fm is stopped	-	4.0	6	$\mu \mathrm{A}$
Stop Current (Crystal type)	Ism1	Stop mode No load (Ext-V) In dual-clock normal operation	-	4.0	6	$\mu \mathrm{A}$
Stop Current (Crystal type)	Ism2	Stop mode No load (Ext-V) In single-clock operation	-	0.1	2	$\mu \mathrm{A}$
Input Low Voltage	VIL	-	Vss	-	0.3 VdD	V
Input High Voltage	VIH	-	0.7 VdD	-	Vdd	V
MFP Output Low Voltage	VmL	$\mathrm{IOL}=3.5 \mathrm{~mA}$	-	-	0.4	V
MFP Output High Voltage	Vмн	$\mathrm{IOH}=3.5 \mathrm{~mA}$	2.4	-	-	V
Port RA, RB Output Low Voltage	VABL	$\mathrm{IOL}=2.0 \mathrm{~mA}$	-	-	0.4	V
Port RA, RB Output High Voltage	Vabh	$\mathrm{IOH}=2.0 \mathrm{~mA}$	2.4	-	-	V

W741C260

DC Characteristics, continue

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
LCD Supply Current	ILCD	All Seg. ON	-	-	6	$\mu \mathrm{A}$
SEG0-SEG31 Sink Current (Used as LCD Output)	IoL1	$\begin{array}{\|l\|} \hline \mathrm{VOL}=0.4 \mathrm{~V} \\ \mathrm{VLCD}=0.0 \mathrm{~V} \end{array}$	0.4	-	-	$\mu \mathrm{A}$
SEG0-SEG31 Drive Current (Used as LCD Output)	IOH1	$\begin{aligned} & \mathrm{VOH}=2.4 \mathrm{~V} \\ & \mathrm{VLCD}=3.0 \mathrm{~V} \end{aligned}$	0.3	-	-	$\mu \mathrm{A}$
Segment Output Low Voltage (Used as DC Output)	VsL	$\mathrm{IOL}=0.6 \mathrm{~mA}$	-	-	0.4	V
Segment Output High Voltage (Used as DC Output)	VsH	$\mathrm{IOH}=3 \mu \mathrm{~A}$	2.4	-	-	V
Port RE Sink Current	IEL	$\mathrm{VOL}=0.9 \mathrm{~V}$	9	13.5	-	mA
Port RE Source Current	IEH	$\mathrm{VoH}=2.4 \mathrm{~V}$	0.4	1.2	-	mA
Input Port Pull-up Resistor	Rcd	Port RC, RD	100	350	1000	$\mathrm{K} \Omega$
$\overline{\text { RES Pull-up Resistor }}$	Rres	-	20	100	500	$\mathrm{K} \Omega$

AC CHARACTERISTICS

(VDD-Vss $=3.0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$, unless otherwise specified)

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Op. Frequency	Fosc	RC type	-	-	4000	KHz
		Crystal type 1 (Option low speed type)	-	32.768	-	
		Crystal type 2 (Option high speed type)	400	-	4190	
Frequency Deviation by Voltage Drop for RC Oscillator	$\stackrel{\Delta f}{f}$	$\frac{f(3 V)-f(2.4 V)}{f(3 V)}$	-	-	10	\%
Instruction Cycle Time	TI	One machine cycle	-	4/Fosc	-	S
Reset Active Width	Traw	Fosc $=32.768 \mathrm{KHz}$	1	-	-	$\mu \mathrm{S}$
Interrupt Active Width	TIAW	Fosc $=32.768 \mathrm{KHz}$	1	-	-	$\mu \mathrm{S}$

PAD ASSIGMENT \& POSITIONS

Note: The chip substrate must be connected to system ground (Vss).

PAD NO.	PAD NAME	\mathbf{X}	\mathbf{Y}	PAD NO.	PAD NAME	\mathbf{X}	Y
1	RE2	-1227.00	1122.00	11	SEG3	-1227.00	-178.00
2	RE3	-1227.00	992.00	12	SEG4	-1227.00	-308.00
3	VSs	-1227.00	862.00	13	SEG5	-1227.00	-438.00
4	COM3	-1227.00	732.00	14	SEG6	-1227.00	-568.00
5	COM2	-1227.00	602.00	15	SEG7	-1227.00	-698.00
6	COM1	-1227.00	472.00	16	SEG8	-1227.00	-828.00
7	COM0	-1227.00	342.00	17	SEG9	-1227.00	-958.00
8	SEG0	-1227.00	212.00	18	SEG10	-1227.00	-1088.00
9	SEG1	-1227.00	82.00	19	SEG11	-1227.00	-1218.00
10	SEG2	-1227.00	-48.00	20	SEG12	-975.00	-1468.00

W741C260

Continued

PAD NO.	PAD NAME	\mathbf{X}	\mathbf{Y}	PAD NO.	PAD NAME	\mathbf{X}	\mathbf{Y}
21	SEG13	-845.00	-1468.00	46	XIN2	1227.00	82.00
22	SEG14	-715.00	-1468.00	47	VDD	1227.00	212.00
23	SEG15	-585.00	-1468.00	48	XouT1	1227.00	342.00
24	SEG16	-455.00	-1468.00	49	XIN1	1227.00	472.00
25	SEG17	-325.00	-1468.00	50	$\overline{\text { RES }}$	1227.00	602.00
26	SEG18	-195.00	-1468.00	51	MFP	1227.00	862.00
27	SEG19	-65.00	-1468.00	52	RA0	1227.00	992.00
28	SEG20	65.00	-1468.00	53	RA1	1227.00	1122.00
29	SEG21	195.00	-1468.00	54	RA2	1041.10	1453.20
30	SEG22	325.00	-1468.00	55	RA3	911.10	1453.20
31	SEG23	455.00	-1468.00	56	RB0	781.10	1453.20
32	SEG24	585.00	-1468.00	57	RB1	651.10	1453.20
33	SEG25	715.00	-1468.00	58	RB2	521.10	1453.20
34	SEG26	845.00	-1468.00	59	RB3	391.10	1453.20
35	SEG27	975.00	-1468.00	60	RC0	261.10	1453.20
36	SEG28	1227.00	-1218.00	61	RC1	131.10	1453.20
37	SEG29	1227.00	-1088.00	62	RC2	1.10	1453.20
38	SEG30	1227.00	-958.00	63	RC3	-128.90	1453.20
39	SEG31	1227.00	-828.00	64	RD0	-258.90	1453.20
40	VDD3	1227.00	-698.00	65	RD1	-388.90	1453.20
41	VDD2	1227.00	-568.00	66	RD2	-518.90	1453.20
42	VDD1	1227.00	-438.00	67	RD3	-648.90	1453.20
43	DH2	1227.00	-308.00	68	RE0	-778.90	1453.20
44	DH1	1227.00	-178.00	69	RE1	-908.90	1453.20
45	XouT2	1227.00	-48.00				

TYPICAL APPLICATION CIRCUIT

Publication Release Date: March 1998

INSTRUCTION SET TABLE

Symbol Description

ACC:	Accumulator
ACC.n:	Accumulator bit n
WR:	Working Register
PAGE:	Page Register
MR0:	Mode Register 0
MR1:	Mode Register 1
PMO:	Port Mode 0
PM1:	Port Mode 1
PM2:	Port Mode 2
PSR0:	Port Status Register 0
R :	Memory (RAM) of address R
LCDR:	LCD data RAM of address LDR
R.n:	Memory bit n of address R
I:	Constant parameter
L:	Branch or jump address
CF:	Carry Flag
ZF:	Zero Flag
PC:	Program Counter
TM0:	Timer 0
TM1:	Timer 1
IEF.n:	Interrupt Enable Flag n
HCF.n:	HOLD mode release Condition Flag n
HEF.n:	HOLD mode release Enable Flag n
PEF.n:	Port Enable Flag n
EVFn:	Event Flag n
$!=:$	Not equal
\&:	AND
\wedge :	OR

W741C260

Symbol Description, continued
EX:
Exclusive OR
$\leftarrow: \quad$ Transfer direction, result
[PAGE*10H+()]: Contents of address PAGE(bit2, bit1, bit0)*10H+()
$[P()]: \quad$ Contents of port $P()$

Instruction Set Table 1

MNEMONIC		FUNCTION	FLAG	CYCLE
Arithmetic				
ADD	R, ACC	$A C C \leftarrow(R)+(A C C)$	ZF, CF	1
ADD	WR, \#l	$\mathrm{ACC} \leftarrow(\mathrm{WR})+\mathrm{I}$	ZF, CF	1
ADDR	R, ACC	ACC, $\mathrm{R} \leftarrow(\mathrm{R})+(\mathrm{ACC})$	ZF, CF	1
ADDR	WR, \#I	ACC, WR $\leftarrow(W R)+\mathrm{l}$	ZF, CF	1
ADC	R, ACC	ACC $\leftarrow(\mathrm{R})+(\mathrm{ACC})+(\mathrm{CF})$	ZF, CF	1
ADC	WR, \#l	$\mathrm{ACC} \leftarrow(\mathrm{WR})+\mathrm{I}+(\mathrm{CF})$	ZF, CF	1
ADCR	R, ACC	ACC, $\mathrm{R} \leftarrow(\mathrm{R})+(\mathrm{ACC})+(\mathrm{CF})$	ZF, CF	1
ADCR	WR, \#I	ACC, WR $\leftarrow(W R)+\mathrm{I}+(\mathrm{CF})$	ZF, CF	1
ADU	R, ACC	$\mathrm{ACC} \leftarrow(\mathrm{R})+(\mathrm{ACC})$	ZF	1
ADU	WR, \#l	$\mathrm{ACC} \leftarrow(\mathrm{WR})+1$	ZF	1
ADUR	R, ACC	ACC, $R \leftarrow(\mathrm{R})+(\mathrm{ACC})$	ZF	1
ADUR	WR, \#I	ACC, W R $\leftarrow(W R)+\mathrm{l}$	ZF	1
SUB	R, ACC	ACC $\leftarrow(\mathrm{R})-(\mathrm{ACC})$	ZF, CF	1
SUB	WR, \#l	$\mathrm{ACC} \leftarrow(\mathrm{WR})-\mathrm{I}$	ZF, CF	1
SUBR	R, ACC	ACC, $R \leftarrow(\mathrm{R})-(\mathrm{ACC})$	ZF, CF	1
SUBR	WR, \#l	ACC, WR $\leftarrow(\mathrm{WR})-\mathrm{I}$	ZF, CF	1
SBC	R, ACC	ACC $\leftarrow(\mathrm{R})-$ (ACC$)-(\mathrm{CF})$	ZF, CF	1
SBC	WR, \#l	ACC $\leftarrow(\mathrm{WR})-\mathrm{I}-(\mathrm{CF})$	ZF, CF	1
SBCR	R, ACC	ACC, $R \leftarrow(\mathrm{R})-(\mathrm{ACC})-(\mathrm{CF})$	ZF, CF	1
SBCR	WR, \#I	ACC, WR \leftarrow (WR) - I - (CF)	ZF, CF	1
INC	R	$\mathrm{ACC}, \mathrm{R} \leftarrow(\mathrm{R})+1$	ZF, CF	1
DEC	R	ACC, $R \leftarrow(\mathrm{R})-1$	ZF, CF	1

W741C260

Instruction Set Table 1，continued

MNEMONIC		FUNCTION	FLAG	CYCLE
Logic Operations				
ANL	R，ACC	$\mathrm{ACC} \leftarrow(\mathrm{R})$ \＆（ACC）	ZF	1
ANL	WR，\＃l	$A C C \leftarrow(W R) \& ~ I$	ZF	1
ANLR	R，ACC	$A C C, R \leftarrow(R) \&(A C C)$	ZF	1
ANLR	WR，\＃I	$\mathrm{ACC}, \mathrm{WR} \leftarrow(\mathrm{WR}) \& \mathrm{l}$	ZF	1
ORL	R，ACC	$A C C \leftarrow(R) \wedge(A C C)$	ZF	1
ORL	WR，\＃l	$\mathrm{ACC} \leftarrow(\mathrm{WR}) \wedge \mathrm{I}$	ZF	1
ORLR	R，ACC	$A C C, R \leftarrow(R) \wedge(A C C)$	ZF	1
ORLR	WR，\＃l	$A C C, W R \leftarrow(W R) \wedge I$	ZF	1
XRL	R，ACC	$\mathrm{ACC} \leftarrow(\mathrm{R}) \mathrm{EX}(\mathrm{ACC})$	ZF	1
XRL	WR，\＃l	ACC $\leftarrow(\mathrm{WR}) \mathrm{EX} \mathrm{I}$	ZF	1
XRLR	R，ACC	ACC，$R \leftarrow(\mathrm{R}) \mathrm{EX}(\mathrm{ACC})$	ZF	1
XRLR	WR，\＃l	ACC，WR $\leftarrow(W R) E X I$	ZF	1
Branch				
JMP	L	PC10－PC0ヶL10－L0		1
JB0	L	PC10－PC0ヶL10－L0；if ACC． $0=71 "$		1
JB1	L	PC10－PC0ヶL10－L0；if ACC． $1=$＂ 1 ＂		1
JB2	L	$\mathrm{PC} 10-\mathrm{PC} 0 \leftarrow \mathrm{~L} 10-\mathrm{LO}$ ；if ACC． $2=$＂1＂		1
JB3	L	$\mathrm{PC} 10-\mathrm{PC} 0 \leftarrow \mathrm{~L} 10-\mathrm{LO}$ ；if ACC． $3=71 "$		1
JZ	L	$\mathrm{PC} 10-\mathrm{PC} 0 \leftarrow \mathrm{~L} 10-\mathrm{LO}$ ；if ACC $=0$		1
JNZ	L	$\mathrm{PC} 10-\mathrm{PCO} \leftarrow \mathrm{L} 10-\mathrm{LO}$ ；if ACC ！$=0$		1
JC	L	PC10－PC0ヶL10－L0；if CF＝＂1＂		1
JNC	L	$\mathrm{PC} 10-\mathrm{PC} 0 \leftarrow \mathrm{~L} 10-\mathrm{LO}$ ；if CF ！＝＂1＂		1
DSKZ	R	ACC，$R \leftarrow(\mathrm{R})-1$ ；skip if $A C C=0$	ZF，CF	1
DSKNZ	R	ACC，$R \leftarrow(\mathrm{R})-1$ ；skip if ACC $!=0$	ZF，CF	1
SKB0	R	Skip if R． $0=$＂1＂		1
SKB1	R	Skip if R． $1=$＂1＂		1
SKB2	R	Skip if R． $2=$＂1＂		1
SKB3	R	Skip if R． 3 ＝＂1＂		1

W741C260

Instruction Set Table 1, continued

MNEMONIC		FUNCTION	FLAG AFFECTED	CYCLE
Data Move				
MOV	WR, R	$\mathrm{WR} \leftarrow(\mathrm{R})$		1
MOV	R, WR	$\mathrm{R} \leftarrow(\mathrm{WR})$		1
MOVA	WR, R	ACC, WR $\leftarrow(\mathrm{R})$	ZF	1
MOVA	R, WR	ACC, $\mathrm{R} \leftarrow(\mathrm{WR})$	ZF	1
MOV	R, ACC	$\mathrm{R} \leftarrow(\mathrm{ACC})$		1
MOV	ACC, R	$\mathrm{ACC} \leftarrow(\mathrm{R})$	ZF	1
MOV	R, \#l	$\mathrm{R} \leftarrow 1$		1
MOV	WR, @R	$\mathrm{WR} \leftarrow[\mathrm{PR}($ bit2, bit1, bit0) $\times 10 \mathrm{H}+(\mathrm{R})]$		2
MOV	@R, WR	$[\mathrm{PR}$ (bit2, bit1, bit0) $\times 10 \mathrm{H}+(\mathrm{R})] \leftarrow \mathrm{WR}$		2
MOV	TABH, R	TAB High addresss \leftarrow R		1
MOV	TABL, R	TAB Low addresss $\leftarrow \mathrm{R}$		1
MOVC	R	$\mathrm{R} \leftarrow[\mathrm{TAB} \times 10 \mathrm{H}+(\mathrm{ACC})]$		2
MOVC	WR, \#I	$\mathrm{WR} \leftarrow[(16 \sim 10) \times 10 \mathrm{H}+(\mathrm{ACC})]$		2
Input \& Output				
MOVA	R, RA	ACC, R↔[RA]	ZF	1
MOVA	R, RB	$\mathrm{ACC}, \mathrm{R} \leftarrow[\mathrm{RB}]$	ZF	1
MOVA	R, RC	$A C C, R \leftarrow[R C]$	ZF	1
MOVA	R, RD	ACC, R↔[RD]	ZF	1
MOV	RA, R	$[R A] \leftarrow(R)$		1
MOV	RB, R	$[R B] \leftarrow(R)$		1
MOV	RE, R	$[R E] \leftarrow(R)$		1
MOV	MFP, \#I	$[\mathrm{MFP}] \leftarrow \mathrm{l}$		1

Flag \& Register

MOVA	R, PAGE	ACC, R \leftarrow PAGE (Page Register)	ZF	1
MOV	PAGE, R	PAGE $\leftarrow(R)$		1
MOV	PAGE, \#I	PAGE $\leftarrow I$		1
MOV	MR0, \#I	MR0 $\leftarrow I$		1
MOV	MR1, \#I	MR1 $\leftarrow I$		1

W741C260

Instruction Set Table 1, continued

MNEMONIC		FUNCTION	FLAG	CYCLE
MOVA	R, CF	ACC. $0, \mathrm{R} .0 \leftarrow \mathrm{CF}$	ZF	1
MOV	CF, R	$\mathrm{CF} \leftarrow$ (R.0)	CF	1
MOVA	R, HCFL	ACC, R↔HCF0-HCF3	ZF	1
MOVA	R, HCFH	ACC, R↔HCF4-HCF7	ZF	1
CLR	PMF, \#I	Clear Parameter Flag if $\mathrm{In}=1$		1
SET	PMF, \#I	Set Parameter Flag if $\mathrm{In}=1$		1
MOV	PM0, \#1	Port Mode $0 \leftarrow 1$		1
MOV	PM1, \#1	Port Mode 1 $\leftarrow 1$		1
MOV	PM2, \#1	Port Mode $2 \leftarrow 1$		1
CLR	EVF, \#I	Clear Event Flag if In = 1		1
MOV	PEF, \#l	Set/Reset Port Enable Flag		1
MOV	IEF, \#I	Set/Reset Interrupt Enable Flag		1
MOV	HEF, \#I	Set/Reset HOLD mode release Enable Flag		1
MOV	SEF, \#1	Set/Reset STOP mode wake-up Enable Flag for RC port		1
MOV	SCR, \#I	Set/Reset System clock Control Resgister		1
MOVA	R, PSR0	ACC, R↔Port Status Register 0	ZF	1
CLR	PSR0	Clear Port Status Register 0		1
SET	CF	Set Carry Flag	CF	1
CLR	CF	Clear Carry Flag	CF	1
CLR	DIVR0	Clear the last 4-bit of the Divider		1
CLR	WDT	Clear WatchDog Timer		1
Shift \& Rotate				
SHRC	R	$\begin{aligned} & \text { ACC.n, R.n } \leftarrow(\text { R. } n+1) ; \\ & \text { ACC. } 3, \text { R. } 3 \leftarrow 0 ; C F \leftarrow \text { R. } 0 \end{aligned}$	ZF, CF	1
RRC	R	$\begin{aligned} & \text { ACC.n, R.n } \leftarrow(\text { R. } n+1) ; \\ & \text { ACC. } 3, \text { R. } 3 \leftarrow C F ; C F \leftarrow \text { R. } 0 \end{aligned}$	ZF, CF	1
SHLC	R	$\begin{aligned} & \text { ACC.n, R.n } \leftarrow \text { (R.n-1); } \\ & \text { ACC. } 0, \text { R. } 0 \leftarrow 0 ; C F \leftarrow R .3 \end{aligned}$	ZF, CF	1
RLC	R	$\begin{aligned} & \text { ACC.n, R.n } \leftarrow(\text { R.n-1) } ; \\ & \text { ACC. } 0, \text { R. } 0 \leftarrow C F ; C F \leftarrow \text { R. } 3 \end{aligned}$	ZF, CF	1

W741C260

TVinbond Electronics Co			
Instruction Set Table 1, continued			
MNEMONIC	FUNCTION	FLAG AFFECTED	CYCLE
LCD			
MOV LCDR, \#	LCDR $\leftarrow 1$		1
MOV WR, LCDR	WRヶ(LCDR)		1
MOV LCDR, WR	LCDR↔(WR)		1
MOV LCDR, ACC	LCDR $\leftarrow(A C C)$		1
MOV LCDM, \#l	Select LCD output mode type		1
LCDON	LCD ON		1
LCDOFF	LCD OFF		1
Timer			
MOV TMOH, R	Timer 0 High register $\leftarrow \mathrm{R}$		1
MOV TMOL, R	Timer 0 Low register $\leftarrow \mathrm{R}$		1
MOV TM0, \#I	Timer 0 set		1
MOV TM1H, R	Timer 1 High register $\leftarrow R$		1
MOV TM1L, R	Timer 1 Low register $\leftarrow R$		1
MOV TM1, \#I	Timer 1 set		1
Subroutine			
CALL L	$\begin{aligned} & \text { STACK } \leftarrow(\mathrm{PC})+1 ; \\ & \text { PC10-PC0 } \leftarrow \mathrm{L10-L0} \end{aligned}$		1
RTN	$(\mathrm{PC}) \leftarrow$ STACK		1
Other			
HOLD	Enter Hold mode		1
STOP	Enter Stop mode		1
NOP	No Operation		1
EN INT	Enable Interrupt Function		1
DIS INT	Disable Interrupt Function		1

Instruction Set Table 2

Instruction Set Table 2, continued

Instruction Set Table 2, continued

Instruction Set Table 2, continued

Instruction Set Table 2, continued

INC R	Increment R contents
Machine Code:	0 1 0 0 1 0 1 00 R6 R5
Machine Cycle:	1
Operation:	$A C C, R \leftarrow(R)+1$
Description:	Increment the data memory contents and load the result into the ACC and the data memory.
Flag Affected:	CF \& ZF
JB0 L	Jump when bit 0 of ACC is "1"
Machine Code:	
Machine Cycle:	1
Operation:	PC10-PC0 \leftarrow L10-L0; if ACC. $0=$ "1"
Description:	If bit 0 of the ACC is "1," PC10 to PC0 of the program counter are replaced with the data specified by L10 to L0 and a jump occurs. If bit 0 of the ACC is " 0 ," the program counter (PC) is incremented.
JB1 L	Jump when bit 1 of ACC is " 1 "
Machine Code:	1 0 0 1 0 L10 L9 L8 15
Machine Cycle:	1
Operation:	PC10-PC0 \leftarrow L10-L0; if ACC. $1=$ "1"
Description:	If bit 1 of the ACC is "1," PC10 to PC0 of the program counter are replaced with the data specified by L10 to L0 and a jump occurs. If bit 1 of the ACC is " 0, , the program counter (PC) is incremented.

Instruction Set Table 2, continued

W741C260

Instruction Set Table 2, continued

Instruction Set Table 2, continued

MOV HEF, \#I	Set/Reset Hold mode release Enable Flag					
Machine Code:	$0 \quad 1$	$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1\end{array}$		$14 \quad 13$	$12 \quad 11 \quad 10$	
Machine Cycle:	1					
Operation:	Hold mode release enable flag control					
Description:	10 to 17	Operation				
	$10=1$	HEFO is set so that overflow from Divider0 will caused the HOLD mode to be released.				
	$11=1$	HEF1 is set so that underflow from Timer 0 will caused the HOLD mode to be released.				
	$12=1$	HEF2 is set so that signal change on port RC caused the HOLD mode to be released.				
	$13=1$	Reserved				
	$14=1$	HEF4 is set so that overflow from Divider1 will caused the HOLD mode to be released.				
	15 \& 16	Reserved				
	17 = 1	HEF7 is set so that underflow from Timer 1 will caused the HOLD mode to be released.				

Instruction Set Table 2, continued

Instruction Set Table 2, continued

MOV PMO, \#I	Set/Reset Port Mode 0 register
Machine Code: Machine Cycle: Operation: Description:	0 1 0 1 0 0 1 1 1 Set/Reset Port mode 0 register $I 0=0:$ RA port is CMOS type; $10=1$: RA port is NMOS type. $I 1=0:$ RB port is CMOS type; $I 1=1$: RB port is NMOS type. $I 2=0: R C$ port pull-high resistor is disabled; $\mathrm{I} 2=1: \mathrm{RC}$ port pull-high resistor is enabled. I3 $=0$: RD port pull-high resistor is disabled; $I 3=1$: RD port pull-high resistor is enabled.
MOV PM1, \#I	RA port independent Input/Output control
Machine Code: Machine Cycle: Operation: Description:	\square \square 1 Input/output control of 4 RA port pins is independent. $10=0$: RA. 0 is output pin; $10=1$: RA. 0 is input pin. $I 1=0$: RA. 1 is output pin; $I 1=1$: RA. 1 is input pin. $I 2=0:$ RA. 2 is output pin; $I 2=1:$ RA. 2 is input pin. $I 3=0$: RA. 3 is output pin; I $3=1$: RA. 3 is input pin. Default condition RA port is input mode ($\mathrm{PM}=111 \mathrm{~B}$).

Instruction set table 2, continued

Instruction Set Table 2, continued

MOVA R, RB	Input RB port data to ACC \& R
Machine Code:	0 1 0 1 1 0 1 1 1 R6
Machine Cycle:	1
Operation:	$\mathrm{ACC}, \mathrm{R} \leftarrow[\mathrm{RB}]$
Description:	The data on port RB are loaded into the data memory location addressed by R6 to R0 and the ACC.
Flag Affected:	ZF
MOVA R, RC	Input RC port data to ACC \& R
Machine Code:	0 1 0 0 1 0 1 1 0 0 R6 R5 R4 R3 R2 R1 R0
Machine Cycle:	1
Operation:	$\mathrm{ACC}, \mathrm{R} \leftarrow[\mathrm{RC}]$
Description:	The input data on the input port RC are loaded into the data memory location addressed by R6 to R0 and the ACC.
Flag Affected:	ZF
MOVA R, RD	Input RD port data to ACC \& R
Machine Code:	0 1 0 0 1 0 1 1 1 R6
Machine Cycle:	1
Operation:	$\mathrm{ACC}, \mathrm{R} \leftarrow[\mathrm{RD}]$
Description:	The input data on the input port RD are loaded into the data memory location addressed by R6 to R0 and the ACC.
Flag Affected:	ZF

Instruction Set Table 2, continued

Instruction Set Table 2, continued

MOV WR, LCDR	Load LCDR contents to WR
Machine Code:	0 1 0 0 0 1 1 D4 D3
Machine Cycle:	1
Operation:	$\mathrm{WR} \leftarrow(\mathrm{LCDR})$
Description:	The contents of the LCD data RAM location addressed by D4 to D0 are loaded to the WR.
MOV WR, R	Move R contents to WR
Machine Code:	
Machine Cycle:	1
Operation:	$\mathrm{WR} \leftarrow(\mathrm{R})$
Description:	The contents of the data memory location addressed by R6 to R0 are loaded to the WR.
MOV WR, @R	Indirect load from R to WR
Machine Code:	
Machine Cycle:	2
Operation:	$\mathrm{WR} \leftarrow[\mathrm{PR}($ bit2, bit1, bit0) $\times 10 \mathrm{H}+(\mathrm{R})]$
Description:	The data memory contents of address [PR (bit2, bit1, bit0) $\times 10 \mathrm{H}+(\mathrm{R})]$ are loaded to the WR.

Instruction Set Table 2, continued

MOV @R, WR	Indirect load from WR to R
Machine Code:	
Machine Cycle:	2
Operation:	$[P R($ bit2, bit1, bit0) $\times 10 \mathrm{H}+(\mathrm{R})] \leftarrow \mathrm{WR}$
Description:	The contents of the WR are loaded to the data memory location addressed by [PR (bit2, bit1, bit0) $\times 10 \mathrm{H}+(\mathrm{R})]$.
MOV PAGE, R	Move R contents to Page Register
Machine Code:	0 1 0 1 1 1 1 0 1
Machine Cycle:	
Operation:	$\mathrm{PR} \leftarrow(\mathrm{R})$
Description:	The contents of the data memory location addressed by R6 to R0 are loaded to the Page Register.
MOVA R, CF	Move CF contents to ACC. 0 \& R. 0
Machine Code:	0 1 0 1 1 0 0 1 0 R6 R5 R4
Machine Cycle:	1
Operation:	ACC. $0, \mathrm{R} .0 \leftarrow$ (CF)
Description:	The contents of CF is loaded to bit 0 of the data memory location addressed by R6 to R0 and the ACC. The other bits of the data memory and ACC are reset to " $0 . "$
Flag Affected:	ZF

Instruction Set Table 2, continued

Instruction Set Table 2, continued

Instruction Set Table 2, continued

MOVA WR, R	Move R contents to ACC \& WR
Machine Code: Machine Cycle: Operation: Description: Flag Affected:	0 1 1 0 1 W3 W2 W1 1 $A C C, W R \leftarrow(R)$ The contents of the data memory location addressed by R6 to R0 are loaded to the WR and the ACC. ZF
MOVC R	Move look-up table ROM addressed by TABL and TABH to R
Machine code: Machine Cycle: Operation: Description:	\square 2 $W R \leftarrow[((T A B H) \times 100 H+(T A B L)) \times 10 H+A C C]$ The contents of the look-up table ROM location addressed by TABH, TABL and ACC are loaded to R.
MOVC WR, \#I	Move look-up table ROM addressed by \#I and ACC to WR
Machine code: Machine Cycle: Operation: Description:	1 0 1 0 1 W3 W2 W1 W0 16 15 14 13 12 11 10 2 $\mathrm{WR} \leftarrow[(\mathrm{I} 6 \sim \mathrm{IO}) \times 10 \mathrm{H}+(\mathrm{ACC})]$ The contents of the look-up table ROM location addressed by 16 to 10 and the ACC are loaded to R.
NOP	No Operation
Machine Code: Machine Cycle: Operation:	\square \square 1 No Operation

Instruction Set Table 2, continued

W741C260

PACKAGE DIMENSION

80-Lead QFP

Symbol	Dimension in Inches			Dimension in mm		
	Min.	Nom.	Max.	Min.	Nom.	Max.
A^{2}	-	-	0.130	-	-	3.30
$\mathrm{~A}_{1}$	0.004	-	-	0.10	-	-
A_{2}	0.107	0.112	0.117	2.73	2.85	2.97
b	0.012	0.014	0.018	0.30	0.35	0.45
C	0.004	0.006	0.010	0.10	0.15	0.25
D	0.546	0.551	0.556	13.87	14.00	14.13
E	0.782	0.787	0.792	19.87	20.00	20.13
\boldsymbol{e}	0.025	0.031	0.037	0.65	0.80	0.95
H_{D}	0.728	0.740	0.752	18.49	18.80	19.10
H_{E}	0.964	0.976	0.988	24.49	24.80	25.10
$\mathrm{~L}^{2}$	0.039	0.047	0.055	1.00	1.20	1.40
$\mathrm{~L}_{1}$	0.087	0.094	0.103	2.21	2.40	2.62
y	-	-	0.004	-	-	0.10
$\boldsymbol{\theta}$	0°	-	12°	0°	-	12°

W741C260
Milinbond
Notes:

W741C260

Headquarters

No. 4, Creation Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan
TEL: 886-3-5770066
FAX: 886-3-5792766
http://www.winbond.com.tw/
Voice \& Fax-on-demand: 886-2-27197006

Winbond Electronics (H.K.) Ltd. Winbond Electronics North America Corp.
Rm. 803, World Trade Square, Tower II, Winbond Memory Lab.
123 Hoi Bun Rd., Kwun Tong, Winbond Microelectronics Corp.
Kowloon, Hong Kong
TEL: 852-27513100
FAX: 852-27552064

Winbond Systems Lab.
2727 N. First Street, San Jose,
CA 95134, U.S.A.
TEL: 408-9436666
FAX: 408-5441798

Taipei Office
11F, No. 115, Sec. 3, Min-Sheng East Rd.,
Taipei, Taiwan
TEL: 886-2-27190505
FAX: 886-2-27197502
Note: All data and specifications are subject to change without notice.

